HEINRICH # HERTZ # INSTITUT FÜR SCHWINGUNGSFORSCHUNG BERLIN • CHARLOTTENBURG

Technischer Bericht Nr. 84

Berechnung eines eindimensionalen Gruppenstrahlers mit ausgeglichenen Nebenzipfeln

von

Dipl.=Ing. Peter ZIMMERMANN

H 84

Berlin 1965

Technischer Bericht Nr. 84

Berechnung eines eindimensionalen Gruppen-

strahlers mit ausgeglichenen Nebenzipfeln

Zusammenfassung

Mit Hilfe eines Näherungsverfahrens werden die Abstände einer Strahlerzeile mit 48 Einzelelementen so bestimmt, daß die Richtcharakteristik der Anordnung eine gegenüber der äquidistanten Strahlerzeile unwesentlich verbreiterte Hauptkeule und Nebenzipfel von untereinander annähernd gleicher Höhe aufweist. Die Halbwertsbreite von $\vartheta_{\rm H} = \pm 15,7^{\circ}$ bei einer Nebenkeulendämpfung von $D_{\rm N} = 21,0$ dB (im ungünstigsten Bereich) erlauben eine Verwendung der Strahlerzeile für raumakustische Peilversuche.

Heinrich-Hertz-Institut für Schwingungsforschung

Der Bearbeiter: gez. Zimmermann

(Dipl.-Ing. Peter Zimmermann)

Der Abteilungsleiter gez. L. Cremer

(Prof.Dr.-Ing. L. Cremer)

Der Institutsdirektor gez. Rothert

(Prof.Dr.-Ing. G. Rothert)

Berlin-Charlottenburg, den 15. Dezember 1965

Inhaltsverzeichnis

- 1. Problemstellung
- 2. Eindimensionale linienhafte Strahler mit äquidistanten Elementen
 - 2.1. Polynomprodukte
 - 2.2. TSCHEBYSCHEFF'scher Verlauf der Richtcharakteristik
- 3. Näherungsverfahren zur Berechnung der Abstände von Einzelstrahlern gleicher Intensität bei vorgegebenem Verlauf der Richtcharakteristik der Strahlerzeile
 - 3.1. Näherungsweise Berechnung der Abstandsverteilung bei Vorgabe eines teilweise sinusförmigen Kurvenverlaufs für R (¥)
 - 3.2. Verminderung von Nebenmaxima mit Hilfe der Stoßfunktion
 - 3.3. Anwendung der Näherungsverfahren auf eine Strahlerzeile mit 48 Elementen
- 4. Ausfuhrung einer Strahlerzeile mit 12 Elementen und Aufnahme ihrer Richtcharakteristik
 - 4.1. Ausführung der Strahlerzeile
 - 4.2. Messung der Richtcharakteristik

Weitere Abbildungen Fig. 4 bis 9

Literaturhinweise

18

1

1

5

6

7

11

13

14

17

17

1. Problemstellung

Zur experimentellen Untersuchung von Reflexionsverhältnissen in Räumen wurden von A. von MEIER und D. SCHWARZE [1] am Institut für Technische Akustik der Technischen Universität Berlin Richtstrahler mit möglichst hoher Peilschärfe entwickelt.

-1 -

Unter anderem entstand ein linienhafter Gruppenstrahler mit Elementen gleicher Intensität in gleichen Abständen in Form eines Rohres, das an einem Ende von einem Druckkammersystem erregt, am anderen Ende mit einem Keil reflexionsfrei abgeschlossen wurde, und mit schmalen Längsschlitzen in gleichen Abständen versehen war. Die Richtcharakteristik dieses Strahlers verläuft nach einer Runktion, deren erstes Nebenmaximum -- bei hinreichend großer Zahl von Elementen -- um 13,5 dB unter dem Hauptmaximum liegt.

Ausgehend von der Annahme, daß die Pegeldifferenz zwischen dem Hauptmaximum und den Nebenmaxima bei gleichbleibender Halbwertsbreite der Hauptkeule am größten sein müßte, wenn alle Nebenmaxima den gleichen Betrag haben, wurde in Form eines Rohres mit 28 nicht äquidistanten Schlitzen ein weiterer Richtstrahler hergestellt, der in erster Näherung die gewünschte Eigenschaft zeigte. Die erforderliche Verteilung der Schlitze auf dem Rohr ist experimentell ermittelt worden.

In der vorliegenden Arbeit wird dagegen versucht, die relativen Abstände der Elemente des Strahlers rechnerisch so zu bestimmen, daß bei gegebener Halbwertsbreite der Hauptkeule alle Nebenmaxima gleich hoch sind.

2. Eindimensionale linienhafte Strahler mit äquidistanten Elementen

SCHELKUNOFF $\begin{bmatrix} 2 \end{bmatrix}$ zeigt (Fig. 1), daß der Richtfaktor einer Gruppe von N ungerichteten Einzelstrahlern, die in gleichen Abständen d auf einer Geraden angeordnet sind, und die Intensitäten $a_0, a_1, a_2, \dots, a_{N-1}$ haben, durch den Absolutwert des Polynoms

$$R = a_0 + a_1 \cdot z + a_2 \cdot z^2 + \dots \cdot a_{N-1} \cdot z^{N-1} = \sum_{n=0}^{N-1} a_n \cdot z^n$$
(1)

mit $z = e^{j\Psi}$,

$$\Psi = \frac{2\pi}{1} \cdot d \circ \cos \vartheta - \varphi = k \cdot d \cdot \cos \vartheta - c$$

2

gegeben ist.

Da die Erregung der Einzelstrahler durch eine entlang der Strahlerachse fortschreitende Welle erfolgen soll, beträgt die Phasenverschiebung op zwischen zwei Elementen im Abstand d

$$\varphi = \frac{2\pi}{\lambda} \cdot d = k \cdot d .$$

Damit lautet der Versor

$$\Psi = k \cdot d \cdot (\cos \delta - 1); \qquad (2)$$

er ist eine Funktion des Winkels ϑ zwischen Fernstrahl und Strahlerachse. Da π reell ist, läuft $z = e^{j\Psi}$ auf dem Einheitskreis um, für $\vartheta = 0$... π , d.h. für eine halbe Umdrehung des Strahlers, überstreicht Ψ den Bereich 0 ... - 2.k.d. SCHELKUNOFF [2] kommt zu der fundamentalen Aussage, daß jede lineare Strahleranordnung mit kommensurablen Abständen)¹ zwischen den Elementen als Polynom gemäß (1) dargestellt, und umgekehrt jedes Polynom (1) als eine lineare Strahleranordnung aufgefaßt werden kann. Wenn die Abstände nicht kommensurabel sind, wird die Strahleranordnung durch eine algebraische Funktion mit inkommensurablen Exponenten beschrieben.

Für gleiche, normierte Intensitäten der Einzelstrahler

$$a_0 = a_1 = a_2 = \dots a_{N-1} = i$$
 (3)

ist das Polynom (1) eine geometrische Reihe mit dem Quotienten z:

$$R = 1 + z + z^{2} + \dots + z^{N-1} = \sum_{n=0}^{N-1} z^{n}.$$
 (4)

kommensurable Abstände lassen sich ganzzahlig durch einen Bezugsabstand teilen Die Anwendung der Summenformel auf (4) liefert

$$R = \frac{z^{N}-1}{z^{-1}} = z^{\frac{N}{2}} - \frac{1}{2} \cdot \frac{z^{\frac{N}{2}} - z^{\frac{N}{2}}}{\frac{1}{z^{2}} - z^{\frac{N}{2}}} = z^{\frac{N}{2}} - \frac{1}{2} \cdot \frac{\sin \frac{N}{2} \cdot y}{\sin \frac{1}{2}}.$$
 (5)

3 -

Streicht man in (5) nun noch den Phasenfaktor $z^{(N-1)/2}$, und dividiert durch die Anzahl der Strahler N, damit das Hauptmaximum den normierten Wert 1 hat, so lautet schließlich die Richtcharakteristik

$$R_{o}(\Psi) = \frac{1}{N} \cdot \frac{\sin N_{2}}{\sin \frac{\Psi}{2}} . \qquad (6)$$

Für N = 48 Elemente zeigt Fig. 4 den Verlauf von R_0 über ¥ Die : N - 1 Nullstellen von R_0 (¥) ergeben sich aus

$$\sin_{\nu}N\frac{\Psi}{2} = 0 \quad \tilde{a} \cdot h \cdot \Psi_{0\nu} = \frac{2\pi}{N} \cdot \nu$$
(7)
mit $\nu = 1, 2, \dots N-1.$

Zwischen zwei aufeinanderfolgenden Nullstellen befindet sich jeweils ein Extremwert. Das Hauptmaximum

$$R_{cMax} = R_{o} (\Psi = 0) = 1$$
 (8)

wiederholt sich mit der Periode 2.k.d. Die N - 1 Nullstellen des Polynoms (4) liegen auf dem Umfang des Einheitskreises. Die Differenz

a al esti de

$$\Delta \Psi_{\text{ov}} = \Psi_{\text{o,v+1}} - \Psi_{\text{ov}} = \frac{2\pi}{N}$$

ist'der Winkel, um den z dort zwischen zwei aufeinanderfolgenden Nullstellen von (4) bzw. (6) fortschreitet.

Wenn die Richtcharakteristik des Strahlers für eine volle Periode ($-\pi$ + π) des Aufpunktwinkels ϑ nur ein Hauptmaximum aufweisen soll, muß der Elementenabstand

 $d \leq \frac{\lambda}{4}$

sein; für $d = \frac{\lambda}{4}$ überstreicht z gerade die untere Hälfte des Einheitskreises.

Für eine größere Anzahl N von Einzelstrahlern kann zur Berechnung der Halbwertsbreite $\Psi_{\rm H}$, die dann klein gegen $\pi/2$ ist, in (6) sin $\Psi/2$ durch $\Psi/2$ ersetzt werden. Die transzendente Gleichung

 $\frac{\sin N \frac{\Psi_{H}}{2}}{N \cdot \frac{\Psi_{H}}{2}} = \sqrt{2}$

liefert

$$H = \frac{2.78}{N}$$
 (9)

Für die Lage der Extremwerte des Richtfaktors folgt aus der Forderung

$$\frac{\partial R}{\partial \Psi} = \frac{\frac{N}{2} \cdot \cos \frac{N\Psi}{2} \cdot \sin \frac{\Psi}{2} - \frac{1}{2} \cdot \cos \frac{\Psi}{2} \cdot \sin \frac{N\Psi}{2}}{N \cdot \sin^2 \frac{\Psi}{2}} = 0$$

die transzendente Gleichung

N.tan
$$\frac{\Psi}{2}$$
 = tan N $\frac{\Psi}{2}$

bei nicht zu geringer Elementenzahl N wird sie annähernd erfüllt durch

$$\Psi_{\nu} = \frac{\pi}{N} \cdot (2\nu + 1) \text{ mit } \nu = 1, 2, \dots N-2 \text{ und}$$
$$\Psi_{0} = 0.$$

Wenn man -- wie oben -- in (6) sin $\Psi/2$ durch $\Psi/2$ ersetzt, ist das Verhältnis des Hauptmaximums zum ersten Nebenmaximum (bei $\Psi_1 = 3\pi/N$)

$$\frac{R_{o}(\Psi=0)}{R_{o}(\Psi=\frac{3\pi}{N})} = N \cdot \sin \frac{3\pi}{2N} \approx N \cdot \frac{3\pi}{2N} = \frac{3\pi}{2} = 4,71$$

d.h. bei hinreichend hoher Anzahl N von Elementen liegt die erste

Nebenkeule um

20.1g 4,71 \approx 13,5 dB

tiefer als das Hauptmaximum.

Da diese Nebenkeulendämpfung oft nicht ausreicht, wurden insbesondere zwei Verfahren entwickelt, mit deren Hilfe man in dem Polynom

$$R = a_0 + a_1 \cdot z + a_2 \cdot z^2 + \dots \cdot a_{N-1} \cdot z^{N-1}$$
(1)

die Koeffizienten $a_0, a_1, \dots a_{N-1}, d.h.$ die Amplituden der Elemente so bestimmt, daß ein Richtdiagramm mit niedrigeren Nebenmaxima und geringerer Halbwertsbreite entsteht.

2.1. Polynomprodukte

Da das Produkt zweier Polynome wiederum ein Polynom ist, folgert SCHELKUNOFF [2], daß stets eine lineare Strahlerzeile existiert, deren Richtcharakteristik gleich dem Produkt der Richtcharakteristiken zweier beliebiger linearer Strahlerzeilen ist.

Geht man von der äquidistanten Zeile mit homogener Amplitudenverteilung aus, deren Richtcharakteristik durch das Polynom

$$R_{(N-1)} = 1 + z + z^{2} + \dots + z^{N-1}$$
(4)

gegeben ist, und quadriert (4), so entsteht das Polynom

$${}^{R}(2N-2) = {}^{R^{2}}(N-1) =$$

$$= 1 + 2 \cdot z + 3 \cdot z^{2} + \dots + N \cdot z^{N-1} + \dots + 2 \cdot z^{2N-3} + z^{2N-2} =$$

$$= a_{0} + a_{1} \cdot z + a_{2} \cdot z^{2} + \dots + a_{2N-2} \cdot z^{2N-2} , \quad (10)$$

dessen Koeffizienten $a_0, a_1, \dots a_{2N-2}$ - wie in (1) - die Intensitäten der 2N - 1 Elemente der durch Multiplikation entstandenen Strahlerzeile sind. Die Multiplikation der von (4) abgeleiteten Form (6) der Richtcharakteristik mit sich selbst liefert

$$R_{o}^{2}(\Psi) = \left(\frac{\sin N\frac{\Psi}{2}}{N \sin \frac{\Psi}{2}}\right)^{2}.$$

Das Hauptmaximum (bei $\Psi = 0$) behält seinen ursprunglichen Wert $R_{oMax} = R_{oMax}^2 = 1$ bei, während die Nebenmaxima, die kleiner als 1 waren, infolge der Multiplikation mit sich selbst absinken. Beispielsweise fällt das um etwa 13,5 dB tiefer als das Hauptmaximum gelegene erste Nebenmaximum auf 27 dB ab.

(11)

2)

(1)

Durch Potenzieren des Richtfaktors R = 1 + z eines Strahlers mit zwei gleich starken Elementen kommt man zu einer Intensitätsverteilung für die Elemente der abgeleiteten Strahlerzeile gemäß den Koeffizienten der binomischen Reihe:

$$^{R}(N-1) = (1+z)^{N-1} = 1 + {\binom{N-1}{1}} \cdot z + {\binom{N-2}{2}} z^{2} + \dots z^{N-1} = \sum_{n=0}^{N-1} {\binom{N-1}{n}} \cdot z^{n}.$$
(12)

Aus dem Richtdiagramm der Grundanordnung (mit zwei Elementen)

$$R_{0}(\Psi) = \frac{\sin 2\frac{\Psi}{2}}{2 \cdot \sin \frac{\Psi}{2}} = \cos \frac{\Psi}{2}$$

erhält man für die abgeleitete Strahlerzeile mit N Elementen

 $R = (\cos \frac{\psi}{2})^{N} - 1.$ (13)

Diese Funktion hat nur ein Hauptmaximum und keine Nebenmaxima, jedoch eine wesentlich größere Halbwertsbreite als das Richtdiagramm (6) für eine Strahlerzeile mit N Elementen gleicher Intensität.

2.2. TSCHEBYSCHEFF'scher Verlauf der Richtcharakteristik C. L. DOLPH 3 fand, daß das Produkt aus Halbwertsbreite der Hauptkeule und Nebenkeulendämpfung konstant ist, und folgerte daraus, daß d e r Strahler, dessen Richtdiagramm nur Nebenmaxima gleicher Höhe aufweist, die größte Peilschärfe bei vorgeschriebener Nebenkeulendämpfung haben musse.

Er vergleicht das Polynom

$$R_{N-1} = a_0 + a_1 \cdot z + a_2 \cdot z^2 + \cdots + a_{N-1} \cdot z^{N-1}$$

رى ئارى ئېرى ئىلىنى ئىلىرى ئىلى ئىلىك

mit der TSCHEBYSCHEFF'schen Funktion erster Art T_{N-1} , die ebenfalls ein rationales Polynom vom (N-1)-ten Grad ist, und den gewunschten Verlauf hat [4]. Dies liefert ein Gleichungssystem für die unbekannten Koeffizienten in (1), d.h. fur die Intensitäten der Elemente des Strahlers.

- 7.-

DOLPH [3] beweist, daß Strahler mit TSCHEBYSCHEFF'scher Richtcharakteristik bei vorgegebener Nebenkeulendämpfung eine Hauptkeule minimaler Breite, und umgekehrt bei vorgegebener Breite der Hauptkeule Nebenmaxima mit minimaler Höhe aufweisen.

Der Nachteil der DOLPH'schen wie auch jeder anderen Amplitudenverteilung, die Elemente unterschiedlicher Intensität benötigt, ist der vermehrte Aufwand für die ungleichförmige Verteilung der insgesamt zugeführten Energie auf die Einzelstrahler. Daher lag es nahe, nach einer Strahleranordnung zu suchen, die mit Elementen gleicher Intensität aber unterschiedlichen gegenseitigen Abständen ein Richtdiagramm mit TSCHEBYSCHEFF'schem Verhalten liefert.

3. Näherungsverfahren zur Berechnung der Abstände von Einzelstrahlern gleicher Intensität bei vorgegebenem Verlauf der Richtcharakteristik der Strahlerzeile

Bei der von DOLP_H [3] gelösten Aufgabe besitzt die lineare Strahlerzeile, deren N Elemente gleichen gegenseitigen Abstand d und frei wählbare Intensitäten haben, N Freiheitsgrade in Form der N Konstanten a_0, a_1, \dots, a_{N-1} ihrer Richtcharakteristik

 $(1)^{-1}$

(13)

 $R = a_0 + a_1 z + \dots + a_{N-1} z^{N-1}$

Sind dagegen die Intensitäten aller N Elemente gleich (hier speziell gleich 1) und die gegenseitigen Abstände frei wählbar, so enthält die Richtcharakteristik dieser Anordnung (Fig. 2)

 $R=1+e^{j}\cdot\nu_{1}\cdot(\cos\vartheta-1)_{+e}j\cdot\nu_{2}\cdot(\cos\vartheta-1)_{+\cdots}+e^{j}\cdot\nu_{N-1}\cdot(\cos\vartheta-1)$

mit den bezogenen Abständen

$$v_n = \frac{2\pi}{\lambda} \cdot l_n = k \cdot l_n$$

8 -

ebenfalls N Freiheitsgrade; es sind dies die N Exponenten v_0 , v_1 , $\cdots v_{N-1}$ der i.a. nicht rationalen Funktion (13). Über die N Koeffizienten and des Polynoms (1) kann vollkommen frei verfügt werden; sie können jeden endlichen Wert annehmen, und insbesondere zum Teil oder ausnahmslos gleich sein, wie z.B. in (4); es gilt also die Ungleichung

$0 \leq a_n \leq a_n + i \leq \infty$

Da beim räumlichen Zusammenfallen zweier Elemente der Intensität 1 – im Widerspruch zur Voraussetzung der nun vorliegenden Aufgabe – ein Element doppelter Intensität entstehen würde, müssen die N Exponenten v_n der Funktion (13) nach Ordnen eine stetig monoton steigende Folge mit

$$0 \leq v_n < v_n + 1 < 1$$

bilden, diese Einschränkung verbietet, daß zwei oder mehrere Exponenten gleich sind.

Von R. F. HARRINGTON [5] ist ein Näherungsverfahren angegeben worden, mit dessen Hilfe Abstandsverteilungen ermittelt werden können, deren Richtcharakteristiken niedrigere erste Nebenmaxima als bei äquidistanter Elementenanordnung aufweisen. Diese Methode soll hier so erweitert werden, daß sie sich zur Bestimmung der Abstände einer Anordnung eignet, deren Richtcharakteristik annähernd TSCHEBYSCHEFF'schen Verlauf zeigt. Fig. 3 zeigt die Geometrie des Strahlers. Seine N Elemente der Intensität 1 haben i. a. ungleiche gegenseitige Abstände, liegen aber paarweise symmetrisch zur Mitte der Anordnung. Strahler mit gerader und ungerader Anzahl N von Elementen können gemeinsam behandelt werden, wenn bei gerader Anzahl über alle ungeraden n < N

 $\sum_{n=1}^{N-1} \stackrel{N-1}{=} \sum_{n=1}^{N-1} \stackrel{N-1}{,} 3, 5, \dots$

und bei ungerader Anzahl über alle geraden n < N

$$\sum_{n}^{N-1} \stackrel{\text{s}}{=} \frac{N-1}{\sum_{n=0,2,4...}}$$

- 9 --

ने भागित्रवसंदिवस्त राज्यकर

summiert wird.

Na Pala A A

an Richard Charl

Der Abstand 1, des n-ten Elements von der Strahlermitte kann als

$$l_{n} = \left(\frac{n}{2} + \epsilon_{n}\right) \cdot d \qquad (14)$$

geschrieben werden, wobei d der gegenseitige Abstand bei äquidistanter Anordnung der Elemente ist, und ϵ_n die Verschiebung aus dieser Lage.

Wenn die Erregung durch eine fortschreitende Welle erfolgt, lautet die normierte Richtcharakteristik der zur Mitte symmetrischen Zeile 5

$$R = \frac{1}{N} \cdot \sum_{n}^{N-1} \cos \left[k \cdot l_{n} \cdot (\cos \vartheta - 1) \right]$$

mit der Abkürzung

$$\Psi = \frac{2\pi}{\lambda} \cdot d \cdot (\cos \vartheta - 1) = k \cdot d \cdot (\cos \vartheta - 1)$$
(wie früher) ist
N-1

$$R = \frac{1}{N} \cdot \frac{\sum_{n=1}^{N-1}}{n} \cos \left[\left(\frac{n}{2} + \epsilon_n \right) \cdot \Psi \right].$$
(15)

(15) enthält als Sonderfall für $\epsilon_n = 0$ die Richtcharakteristik des Strahlers mit N äquidistanten Elementen

$$R_{0} = \frac{1}{N} \sum_{n}^{N-1} \cos n \frac{\Psi}{2} = \frac{1}{N} \frac{\sin N \frac{\Psi}{2}}{\sin \frac{\Psi}{2}}; \qquad (16)$$

wie zu erwarten, ist, (16) mit (5) identisch.

Mit Hilfe des Additionstheorems

$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta$$

geht (15) über in

$$R = -\frac{1}{N} \cdot \sum_{n}^{N-1} \left[\sin \epsilon_n \Psi \cdot \sin n \frac{\Psi}{2} - \cos \epsilon_n \Psi \cdot \cos n \frac{\Psi}{2} \right];$$

auf der rechten Seite wird mit dem Richtdiagramm der äquidistanten Zeile erweitert:

$$R = R_{o} - \frac{1}{N} \cdot \sum_{n}^{N-1} \cos n \frac{\Psi}{2} + \frac{N-1}{N} \cdot \sum_{n}^{N-1} \left[\sin \epsilon_{n} \Psi \cdot \sin n \frac{\Psi}{2} - \cos \epsilon_{n} \Psi \cdot \cos n \frac{\Psi}{2} \right];$$

dann ist nach Zusammenfassen

$$\mathbf{R} = \mathbf{R}_{0} - \frac{1}{N} \cdot \sum_{n}^{N-1} \left[\sin \epsilon_{n} \Psi \cdot \sin n \frac{\Psi}{2} - (1 - \cos \epsilon_{n} \Psi) \cdot \cos n \frac{\Psi}{2} \right].$$
(17)

Nun soll angenommen werden, daß $\epsilon_n \cdot \psi$ klein gegen $\pi/2$ ist; wie weit diese Voraussetzung erfüllt ist, kann jeweils an Hand der errechneten Werte ϵ_n nachgeprüft werden. Für das kleine Argument $\epsilon_n \cdot \psi$ ist in erster Näherung

$$\sin e_n \cdot \Psi \approx e_n \cdot \Psi$$
, $\cos e_n \cdot \Psi \approx 1$;

damit geht (17) über in

$$R = R_0 - \frac{\Psi}{N} \cdot \sum_{n}^{N-1} \epsilon_n \cdot \sin n \frac{\Psi}{2},$$

und kann geschrieben werden als

$$\sum_{n}^{N-1} \epsilon_n \cdot \sin n \frac{\Psi}{2} = \frac{N}{\Psi} \cdot (R_0 - R).$$
(18)

Die Integration der Gleichung (18) nach dy über den Bereich $\Psi = 0....\pi$ liefert mit Hilfe der Orthogonalitätsbeziehung

$$\int_{\Psi=0}^{\pi} \sin a \, \Psi \cdot \sin b \, \Psi \cdot d \, \Psi = \begin{pmatrix} \pi/2 \\ 0 \end{pmatrix} f \ddot{u} r \quad \begin{pmatrix} a=b \neq 0 \\ a \neq b \end{pmatrix}$$

die Verschiebungen ϵ_n :

a da de cara da de ang

$$\varepsilon_n = \frac{2N}{\pi} \cdot \int_{\Psi=0}^{\pi} \frac{1}{\Psi} (R_0 - R) \cdot \sin n \frac{\Psi}{2} \cdot d\Psi$$
 (19)

Diese auf kleine en v beschränkte Näherung ist identisch mit der Beziehung für die Koeffizienten der FOURIER'schen Reihe, und stellt eine Entwicklung der Funktion

$$\frac{R_{0}(\Psi) - R(\Psi)}{\Psi}$$

mit kleinstem quadratischen Fehler dar. Die e_n werden um so kleiner sein, je weniger die nicht-äquidistante Anordnung mit $R(\Psi)$ von der äquidistanten mit $R_o(\Psi)$ abweicht.

3.1. Näherungsweise Berechnung der Abstandsverteilung bei Vorgabe eines teilweise sinusförmigen Kurvenverlaufs für R(Y)

Eine Richtcharakteristik $R(\Psi)$ mit Nebenmaxima gleicher Höhe erhält man am einfachsten, indem man fordert, daß $R(\Psi)$ bis zum ersten Nulldurchgang $\Psi_{01} = 2\pi/N$ der Richtcharakteristik $R_0(\Psi)$ nach (16) bzw. (5) der äquidistanten Anordnung folgt, und sich dann als Sinuskurve mit gleicher Kreisfrequenz (1/2). N fortsetzt; die Nullstellen der Funktion $R(\Psi)$

$$\Psi_{01} = \frac{2\pi}{N} \cdot v$$
 mit $v = 1, 2, ..., N-1$

sind dann identisch mit denen von $R_{o}(\Psi)$.

Das Integral (19) zerfällt in zwei Bereiche. Für $\Psi = 0 \dots 2\pi/N$ ist

$$R(\Psi)=R_{0}(\Psi) \text{ bzw. } \frac{R_{0}(\Psi)-R(\Psi)}{\Psi} \equiv 0, \text{ d.h. } \epsilon_{n}=0,$$

und für $\Psi = 2\pi/N \dots \pi$ ist

$$R_{0}(\Psi) = \frac{1}{N} \cdot \frac{\sin N_{2}^{\Psi}}{\sin 2^{\Psi}}$$

$$\frac{101513}{R(\Psi)} = \frac{a}{N} \cdot \sin N\frac{\Psi}{2};$$

das Integral (19) lautet damit

$$\begin{split} \varepsilon_{n} &= \frac{2N}{\pi} \cdot \int_{\Psi_{01}}^{\pi} \frac{1}{N} \cdot \frac{1}{\Psi} \cdot \left[\frac{\sin N\frac{\Psi}{2}}{\sin \frac{\Psi}{2}} - a \cdot \sin N\frac{\Psi}{2} \right] \cdot \sin n\frac{\Psi}{2} \cdot d\Psi = \\ &= \frac{2}{\pi} \cdot \int_{\Psi_{01}}^{\pi} \frac{1}{\Psi} \cdot \frac{\sin N\frac{\Psi}{2}}{\sin \frac{\Psi}{2}} \cdot \sin n\frac{\Psi}{2} \cdot d\Psi + \\ &- \frac{2}{\pi} \cdot \int_{\Psi_{01}}^{\pi} \cdot a \cdot \frac{1}{\Psi} \cdot \sin N\frac{\Psi}{2} \cdot \sin n\frac{\Psi}{2} \cdot d\Psi = J_{1} - J_{2} \cdot \end{split}$$

(20)

Für das Integral J₁ existiert i. a. keine Stammfunktion; es muß nach einem der Näherungsverfahren zur Berechnung bestimmter Integrale ausgewertet werden.

Der Anteil J₂ von (21) wird mit

$$\sin \alpha \cdot \sin \beta = (1/2) \cdot \cos (\alpha - \beta) - (1/2) \cdot \cos (\alpha + \beta)$$

umgeformt, und lautet dann

$$J_{2} = \frac{2a}{\pi} \int_{\psi_{01}}^{\pi} \frac{1}{2} \cdot \frac{\cos(N-n)}{\frac{\psi}{2}} \cdot d\psi - \frac{2a}{\pi} \cdot \int_{\psi_{01}}^{\pi} \frac{1}{2} \frac{\cos(N+n)\frac{\psi}{2}}{\psi} \cdot d\psi.$$

Mit

$$\int_{\Psi=\Psi}^{\pi} \frac{\cos \alpha \Psi}{\Psi} = d\Psi = \int_{\alpha\Psi=0}^{\alpha\pi} \frac{\cos (\alpha \cdot \Psi)}{\alpha \cdot \Psi} \cdot d(\alpha \cdot \Psi) = \left[\operatorname{Ci}(\alpha \cdot \Psi)\right]_{\alpha \cdot \Psi}^{\alpha \cdot \pi} \text{ und } \Psi_{0,1} = \left[\operatorname{Ci}(\alpha \cdot \Psi)\right]_{\alpha \cdot \Psi=0}^{\alpha \cdot \pi}$$

Child Land

ist

$$J_{2} = \frac{2}{\pi} \cdot \left[\operatorname{Ci}\left(\frac{N-n}{2} \cdot \pi\right) - \operatorname{Ci}\left(\frac{N-n}{N} \cdot \pi\right) - \operatorname{Ci}\left(\frac{N+n}{2} \cdot \pi\right) + \operatorname{Ci}\left(\frac{N+n}{N} \cdot \pi\right) \right] \cdot \left(22\right)$$

Der Integralcosinus Ci(x) ist zusammen mit dem Integralsinus Si(x) beispielsweise in $\lceil 6 \rceil$ und $\lceil 7 \rceil$ vertafelt.

Das Teilintegral

$$J_{1} = \frac{2}{\pi} \cdot \int_{\Psi=\Psi_{01}}^{\pi} \frac{1}{\Psi} \cdot \frac{\sin N_{2}^{\Psi}}{\sin \frac{\Psi}{2}} \cdot \sin n_{2}^{\Psi} \cdot d\Psi \qquad (23)$$

läßt sich nur für n = 1 geschlossen auswerten; dann ist

$$J_{1}^{(n=1)} = \frac{2}{\pi} \cdot \begin{bmatrix} \pi & \frac{\sin N\frac{\psi}{2}}{\frac{\psi}{2}} \\ \psi_{01} & \frac{N\frac{\psi}{2}}{\frac{\psi}{2}} \end{bmatrix} \cdot d\left(N\frac{\psi}{2}\right) = \frac{2}{\pi} \cdot \begin{bmatrix} \operatorname{Si}\left(N\frac{\pi}{2}\right) - \operatorname{Si}\left(\pi\right) \end{bmatrix} .$$
(23.1)

3.2. Verminderung von Nebenmaxima mit Hilfe der Stoßfunktion

Das von HARRINGTON 5 angegebene Näherungsverfahren zur Verminderung der ersten Nebenmaxima der Richtcharakteristik einer ursprünglich äquidistanten Strahlerzeile umgeht die aufwendige Auswertung des Integrals (23) durch Verwendung der Stoßfunktion.

Wenn das 'gewunschte' Richtdiagramm $R(\underline{v})$ mit dem Richtdiagramm $R_{o}(\underline{v})$ für die äquidistante Zeile ubereinstimmt, ist

$$R_{O}(\Psi) - R(\Psi) = 0$$

dies möge im ganzen Bereich $\Psi = 0 \dots \pi$ gelten, außer an den K Stellen Ψ_k , an denen Nebenmaxima liegen, die reduziert werden sollen. Dort sei $R_o(\Psi) - R(\Psi)$ gleich der Stoßfunktion

$$a_{k} \cdot \sigma_{1} \left(\Psi - \Psi_{k} \right) = \begin{cases} a_{k} \cdot 1 \\ 0 \end{cases} \text{ fur } \begin{pmatrix} \Psi = \Psi_{k} \\ \Psi \neq \Psi_{k} \end{cases}$$

Dann entfällt die Integration in (19), denn es ist

$$\frac{R_{o}(\Psi)-R(\Psi)}{\Psi} = \frac{1}{\Psi} \cdot \sum_{k=1}^{K} a_{k} \cdot \sigma_{1} (\Psi-\Psi_{k})$$

und damit

$$\epsilon_{n} = \frac{2N}{\pi} \cdot \int_{\Psi=0}^{\pi} \frac{1}{\Psi} \left[\sum_{k=1}^{K} a_{k} \cdot \sigma_{1} (\Psi - \Psi_{k}) \right] \cdot \sin \frac{n}{2} \Psi \cdot d\Psi = \frac{2N}{\pi} \cdot \sum_{k=1}^{K} a_{k} \cdot \frac{1}{\Psi_{k}} \cdot \sin \frac{n}{2} \Psi_{k} .$$
(24)

Die Koeffizienten a_k bestimmen die jeweilige Amplitude der K Stöße. : 14 .

Nach erfolgreicher Erprobung an Strahlerzeilen mit N = 8 und 12 Elem nten, wurden mit den angegebenen Näherungsverfahren Abstandsverteilungen für N = 48 Elemente auf der S 2002 des Hahn-Meitner-Instituts fur Kernforschung, Sektor Mathematik, Berlin-Wannsee, berechnet.

Fig. 4 zeigt die Richtcharakteristik $R_0(\Psi)$ (6) des äquidistanten Strahlers. Wie erwartet, liegt der erste Nebenzipfel um etwa 13,5 dB unter dem auf 1,0 normierten Hauptmaximum.

Für verschiedene Werte des die Amplitude der Sinuskurve (20) bestimmenden Parameters a wurden die zugehörigen Werteserien ϵ_n gemäß (21) berechnet. Da der Gültigkeitsbereich der verwendeten trigonometrischen Näherungen mit den teilweise verhältnismäßig großen Werten ϵ_n bei weitem überschritten ist, kann nicht erwartet werden, daß die Auswertung der exakten Formel (15) fur die Richtcharakteristik mit den einmal errechneten Werten ϵ_n den vorgegebenen Kurvenverlauf genau wiedergibt. Daher muß aus den Richtdiagrammen

 $R(\Psi) = \frac{1}{24} \cdot \underbrace{\frac{47}{5...}}_{n=1,3,5...} \cos\left[\left(\frac{n}{2} + \epsilon_n\right) \cdot \Psi\right] (15.1)$

fur die verschiedenen Serien der relativen Verschiebungen ϵ_n dasjenige ausgesucht werden, das den ausgeglichensten Verlauf im Bereich der Nebenzipfel aufweist. Es ist dies das Diagramm für a = 2,0, d.h. fur eine Sinusamplitude von a/N = 0,0417, die in Fig. 5 strichliert eingetragen ist. Mit Ausnahme des zweiten Nebenzipfels liegt die Kurve annähernd im vorgeschriebenen Bereich.

Der zweite Nebenzipfel liegt mit 17,4 dB um 10,2 dB höher als der vorgegebene Maximalwert der Sinuskurve, dem eine Absenkung von 27,6 dB gegenüber dem Hauptmaximum entspricht. Zur Verminderung dieses Nebenzipfels – möglichst auf Kosten der Nebenzipfel, die die vorgeschriebene Maximalamplitude noch nicht erreichen – soll das Impulsverfahren von HARRINGTON herangezogen werden. Im Maximum des zweiten Nebenzipfels bei $\Psi_1 = 16,0^{\circ}$ wird ein Impuls mit $a_1 = 0,00360$ angebracht; damit vereinfacht sich die Summe (24) zu

$$\Delta \varepsilon_{n} = \frac{2N}{n} \cdot a_{1} \cdot \frac{1}{\psi_{1}} \cdot \sin \frac{n}{2} \psi_{1} , \qquad (24.1)$$

wobei statt ϵ_n $\Lambda \epsilon_n$ geschrieben wurde, weil diese Größenadziszvo Korrekturen der relativen Verschiebungen (21) des Integralverfahrens sind)¹. Die Stärke des Impulses muß durch systematische Versuche, d.h. Einsetzen der resultierenden Werte von ϵ_n in (15.1), und Interpolation ermittelt wurden.

Das Ergebnis der Korrektur zeigt Fig. 6: der zweite Nebenzipfel ist auf 21,0 dB abgesunken, während der erste und dritte anstiegen, letzterer annähernd auf den Betrag des zweiten, so daß hier die Grenze der Verminderung mit Hilfe nur eines Impulses erreicht ist. Bei Verwendung von zwei entgegengesetzt gerichteten Impulsen zur gleichzeitigen Verminderung des zweiten und dritten Nebenzipfels ließe sich der Verlauf der Richtcharakteristik noch weiter ausgleichen und in den vorgeschriebenen Bereich zwängen. Jedoch wurde von dieser Möglichkeit kein weiterer Gebrauch gemacht, da einerseits der zusätzliche Aufwand an Rechenzeit erheblich ist, und zum anderen eine Absenkung der Nebenzipfel auf 21 B unter das Hauptmaximum für die vorgesehene Verwendung des Strahlers zu akustischen Peilversuchen ausreicht.

a) Relative Ver	schiebungen	ε _n (n	= 1, 3,	47)	nach	dem
Integralverf	ahren					•

ε	-0,144	-0,463	-0,738	-1,033	-1,271	-1,517	-1,694	-1,870
. n	-1,965	-2,030	-2,043	-2,021	-1,895	-1,752	-1,495	-1,225
	-0,830	-0,432	+0,102	+0,611	+1,271	+1,827	+2,539	+2,592

b) Relative Verschiebungen ϵ_n (n = 1, 3, ... 47) nach dem Integralverfahren mit zusätzlicher Impulskorrektur

En	-0,089	-0,302	-0,484	-0,705	-0.895	-1,122	-1,311	-1,528
	-1,690	-1,865	-1,960	-2,048	-2,030	-1,985	-1,807	-1,592
· ·	-1,223	-0,821	-0,253	+0,318	+1,061	+1,718	+2,539	+2,701

- 15 -

Für die äquidistante Strahlerzeile hat das Hauptmaximum der Richtcharakteristik $R_0(\Psi)$ nach Fig. 4 eine Halbwertsbreite von $\Psi_H = \pm 3,30^\circ$ bzw. $\vartheta_H = \pm 15,56^\circ$, in guter Übereinstimmung mit der Näherungsformel (9), die $\Psi_H = \pm 3,32^\circ$ liefert. Die Absenkung der Nebenmaxima, sowohl nach dem Integralverfahren als auch nach der anschließenden Impulskorrektur (Fig. 5 und Fig. 6), ließ die Halbwertsbreite nur unwesentlich, nämlich auf $\Psi_H = \pm 3,36^\circ$ bzw. $\vartheta_H = \pm 15,70^\circ$, steigen, während stattdessen die ursprünglich niedrigen Nebenzipfel im Bereich $\Psi = \pi/2 \dots \pi$ (der Fig. 4) anwuchsen.

Bei Vorgabe der zulässigen Halbwertsbreite w_H eines Strahlers ist also durch die Näherungsformel

$$\Psi_{\rm H} = \pm \frac{2,78}{N} \left[\text{rad} \right] \qquad (9)$$

die Zahl N der erforderlichen Elemente festgelegt. Erfahrungsgemäß läßt sich das Niveau der Nebenzipfel dann etwa auf die Höhe des Nebenzipfels bei $\Psi = \pi/2$ absenken, die näherungsweise 2/N. beträgt, und einer Nebenkeulendämpfung von

$$D_{\rm N} = 20.1g({\rm N}/2)$$

entspricht.

In Fig. 7 sind die Abstandsverteilungen

$$l_n = (n/2 + \varepsilon_n) \cdot d \qquad (14)$$

mit $d = \lambda/4 = 21,25$ mm (gemäß einer Betriebsfrequenz von f = 4000 Hz in Luft mit c = 340 m/sec) fur a) die äquidistante Zeile, b) die nach dem Integralverfahren berechnete und schließlich c) die zusätzlich nach dem Impulsverfahren korrigierte Zeile dargestellt. Das Vorhalten der Werte ε_n zeigt sich noch deutlicher in ihrer Darstellung über dem laufenden Index n von 1 bis (N - 1) in Fig. 8: sie erreichen ihren negativen Höchstwert bei etwa N/2 und gehen bei etwa 3N/4 durch Null, um dann stärker positiv anzusteigen. Dieses Verhalten zeigt sich auch bei vergleichbaren Zeilen mit N = 8 und 12 Elementen. Ausführung einer Strahlerzeile mit N=12 Elementen und Aufnahme ihrer Richtcharakteristik

4.1. Ausführung der Strahlerzeile

Im Institut für Technische Akustik ist versuchsweise eine kleine Strahlerzeile mit nur 12 Elementen, die nach den angegebenen Verfahren berechnet wurde [8], in Form eines Hartpapierrohres mit 12 kleinen, gleich starken Bohrungen realisiert worden. Ein Druckkammersystem (Isophon DK-2T) regt über ein Anpassungsstück eine ebene, im Rohr fortschreitende Welle an, die am Rohrende von einem Keil aus Steinwolle reflexionsfrei absorbiert wird.

Aus jeder der 12 Bohrungen soll der gleiche Schallfuß $\underline{q} = S_B \cdot \underline{v}$ treten. Diese bedeuten jedoch einen Nebenschluß für den akustischen Widerstand, den die im Rohr fortschreitende Welle vorfindet; daher muß ihr akustischer Widerstand groß gegen den des Rohres sein. Aus dieser Forderung ergibt sich der maximal zulässige Querschnitt der Bohrungen.

Für das Rohr mit dem Querschnitt $S_R = (\pi/4) \cdot d_i^2$ ist $\frac{Z}{2} k_R = \frac{p}{\underline{v} \cdot S_R} = \frac{Z}{S_R} = \frac{p \cdot c}{S_R} - \frac{g}{c_{cm}^4 \cdot sec}$.

Die N Bohrungen werden als Resonatorhälse aufgefaßt; ihre wirkliche Länge loist gleich der Wandstärke des Rohres, ihr Durchmesser sei a. Dann ist ihr akustischer Widerstand

$$\underline{Z}_{ak_{B}} = \mathbb{N} \cdot \mathbf{j} \cdot \omega \ \mathbf{L}_{ak} = \mathbb{N} \cdot \mathbf{j} \cdot \omega \ \mathbf{\cdot} \frac{\mathbf{\rho} \cdot \mathbf{l}}{\mathbf{S}_{B}} \quad \left[\frac{\mathbf{g}}{\mathbf{cm}^{4} \cdot \mathbf{sec}}\right]$$

mit $l = l_0 + (\pi/2) \cdot a \approx l_0 + 1, 6.a$ und $S_B = (\pi/4) \cdot a^2$. Das Ver-

$$\frac{z_{ak}}{z_{ak}} = N \cdot \frac{\omega \cdot \rho \cdot 1}{S_{B}} \cdot \frac{S_{R}}{\rho \cdot c} = N \omega \cdot \frac{1}{c} \cdot \frac{S_{R}}{S_{B}} = N \cdot \omega \cdot \frac{1_{o} + 1, 6 \cdot a}{c} \cdot \frac{d_{i}^{2}}{a^{2}}$$

soll klein gegen 1 sein. Andererseits ist man bei Peilversuchen an möglichst großen Austrittsöffnungen für den Schallfuß interessiert. Als Kompromiss zwischen diesen beiden Forderungen wurden hier Bohrungen mit a = 2 mm gewählt, die im reflexionsarmen Raum gute Resultate liefern. Mit den Rohrabmessungen $d_i = 38 \text{ mm}, l_0 = 1 \text{ mm}$ entspricht ihnen ein Verhältnis

4.2. Messung der Richtcharakteristik

Den Versuchsaufbau zur Messung der Richtcharakteristik zeigt Fig. 9. Das Druckkammersystem wird von einem Sinusgenerator erregt. Über Terzfilter und Verstärker gelangt die Mikrophonspannung auf den Pegelschreiber. Der Strahler ist auf einem kleinen motorgetriebenen Drehtisch befestigt. Für verschiedene Frequenzen empfiehlt es sich, die Pegeldiagramme mit gleichem Papiervorschub und gleicher Motordrehzahl zu schreiben; dann haben sie gleiche Länge, und können bequem untereinander verglichen werden.

Die Messungen wurden im reflexionsarmen Raum des Instituts durchgeführt. Die Meßergebnisse zeigen nach Umrechnung der Winkel 3 in Y gemäß

$$\Psi = k \cdot d \cdot (\cos \beta - 1)$$
 (2)

sehr gute Übereinstimmung mit der errechneten Richtcharakteristik [8].

L	it	е	r	a	t	u	r	h	i	n	W	e	i	S	e

		•
[1]	A. von MEIER	Technischer Bericht Nr. 55 des
	D. SCHWARZE	Heinrich-Hertz-Institutes für
		Schwingungsforschung,
		Berlin 1961
		and the state of the second
[2]	S. A. SCHELKUNOFF	A Mathematical Theory of Linear
		Arrays, Bell System Techn. Journ.
		Vol. 22 (Jan. 1943), p. 80 ff
3	C. I. DOLPH	A Current Distribution for Broad-
		side Arrays which Optimizes the
		Relationship Between Beamwidth
		and Side-Lobe Level,
		Proc, of the IRE, Vol. 34 (June
		1946),
		p. 335 ff
[4]	W. KLEIN	Grundlage der Theorie elektrischer
		Schaltungen,
•••		Akademie-Verlag, Berlin 1961
5	R. F. HARRINGTON	Sidelobe Reduction by Nonuniform
		Element Spacing,
		IRE Transactions on Antennas and
		Propagation, Vol. AP-9 (March 1961)
		2, p. 187 ff
6	NATIONAL BUREAU	Tables of Sine, Cosine and Exponen-
	OF STANDARDS	tial Integrals, I + II, New York 1940
7	NATIONAL BUREAU	Tables af Sine and Cosine Integrals
	OF STANDARDS	from 10 to 100, New York 1954
		이 집에서 가슴을 잡은 것이 가지?
8	P. ZIMMERMANN	Berechnung eines eindimensionalen

Gruppenstrahlers

Diplomarbeit am Institut für Technische Akustik der Techn. Universität Berlin, 1965, Unveröffentlichtes Manuskript

Fig. 1 Strahlerzeile mit Elementen in äquidistantem Abstand

.....

a) gerade Anzahl N von Elementen

b) ungerade Anzahl N von Elementen

Fig. 3 Symmetrische Strahlerzeile mit Elementen in ungleichen Abständen

		5 * * *
		<u></u>
an ain a ta		
- 0 0 -		
	998, 8 mm	· · · · ·
9 -0	·····································	
· · · · · · · · · · · · · · · · · · ·	1109,0 mm	
-00	 · _ @ @ @ @ @ @ @ @ @ @	
	Fig. 7: Abmessungen der Strahlerzeilen mit N = 48 Elementen	
	a) äquidistante Abstände	·
	D) Absidinge nach dem integrativerfahren mit	

. . .

							hiji C.												<u> </u>
	<u> </u>	• •			, î î î î î		7.44	·			<u>11</u>				bu ji ta s	<u> </u>	<u></u>		
				eri ara eri dar Manaziri	• • • • •			<u> </u>									<u> </u>		
	· · · · · · · · · · · · · · · · · · ·				. : : ·		<u>er (. 7. j</u>	201-11-11	<u></u>										
••••••				 					• 12 • 17 • 17 • 17 • • 17 • 1 1 • • •		<u> </u>	<u>Let Bird</u>	میں سفانی روجیت	·····		<u> </u>			
nt	•						1. 5. 1.2. 5. 5. 5.	<u></u>							<u> </u>	<u>1.411.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4</u>	<u>1 </u>		
					· · · · ·	:			<u> </u>					<u></u>	<u></u>				
0							·····		.5 *** _2 			· · · · · · · · · · · · · · · · · · ·			<u> </u>		<u>iri i</u>		
			····	i		سرا پری	ų da									<u> </u>	- x	¥	
0		· · · · · · · · · · · · · · · · · · ·	، ، ، ، بر ید						<u>, a s</u>	•••• •••••••••••••••••••••••••••••••••		<u> </u>		·····			<u></u>	<u></u>	<u></u>
						ji hayana				an se francas						*			<u></u>
0	· · · · · · · · · · · · · · · · · · ·	 			• • • • • • • •	· · · · · · · · · · · · · · · · · · ·			*						×				<u>19 89</u>
a a	1 3	5	7 9	9 11	13	15 1	17 19		23	25 27	29	. 31	. 35 .	. 37	• 41 ×	43	_ 45	47	<i>n</i>
	•	1			1 a b as						3. 15. j.			• •					
		×	×.		x	· · · · · ·	1	···· · · ·			ويشذك	a an a 12an an	• • •			••••••••••••••••••••••••••••••••••••••			<u></u>
0			- • ?	×	`				······································			• ×	···· ^···				<u></u>	1 - 1 - 1 - 1 	
				٠	•	×	×	and and a		•		×			<u></u>	<u></u>	i di ci		
0	· · · · · · · · · · · · · · · · · · ·		·	e, nare , d	han sahar sa		•	¥	- × -	× ×						<u></u>	• • • • • •	· . :	i sint.
						· · · · ·				19. A 19. A		in the second	e er stærels af ens e e						
0		in dan Sin Arti	en e N					n ain innen T	en e			a a daaraa aa aa ay ay ahay ahay ahay ahay ah	· · · · · · · · · · · · · · · · · · ·						
-		 -	•		1. ¹ . 1	** <i></i>			• •			i inigan pir	2	<u>.</u>	an a	· · · · · · · · · · · · · · · · · · ·			•
	· · · · · · · · · · · · · · · · · · ·		· · ·	· · · · ·											·		in tea		
																			217
		· /	-ig. 8:	Relo	ntive	Vers	chieb	unger	En	uber l	n		· · · ·		2 C 2				
				a)	nach	dem	n Int	egral	verf	ahren	(0	0 0)						•••••	
		<i>i</i>		61	nach	de	m Ir	tenro	alver	fahre	n m	nit in the second se		· · · ·	••••••			·	
		· · · · · · · ·		0)	nucr	Lich		lannal		nach	dam	<u>, a d' (</u>			<u> </u>	· · · · ·			
	· · · · · · ·		•		zusat	ZIICN	er K	orrek	aur	nach	dem	· · ·		· · · ·			•-		· · · ·
	<u>.</u>				Impul	sveri	fahre	en (×	XX)			· · · · · · · · · · · · · · · · · · ·						
		· · · ·			. . 				1999 - 1999 -				5. ⁵ .		· /			- <u>1</u>	
				•					- 1. s	1						* 1	101 at		

سميت محدود کې ورغې ده د د د د د د د د د د

براه باروسيد ويشتر بالمراور بالمراج
